🔑Stochastic gradient descent (SGD) reduces the computational complexity of regular gradient descent for big data and complex models.
🏃♂️SGD randomly selects subsets or mini-batches of data to compute parameter updates, striking a balance between single-sample and all-data approaches.
⚖️Choosing the right learning rate schedule is crucial for optimal parameter convergence in SGD.
🔄SGD allows easy incorporation of new data by updating parameter estimates without starting from scratch.
📈SGD is especially useful when there are redundancies in the data, enabling stable parameter estimation in fewer steps.